OpenVPX(VITA 65)在关键军事应用的系统速度、可靠性、可升级性、封装和Swap-C(尺寸、重量和性能冷却*)方面实现了显著改进。它还为多个设备甚至跨服务提供了更高的总线结构通用性。
随着系统密度的增加,需要更积极和创新的热管理技术。OpenVPX 现在拥有多项标准,这些标准提供了在系统内散热的各种方法。
在这里,我们将仔细研究VITA 48.8,因为它显示出令人鼓舞的迹象,表明它已成为最实用,也可能是最具成本效益的选择。它使用气流冷却方式,其机械设计支持卡片两边的进气口,同时将气流引导到主板的整个顶面。通常,传导冷却方法为液体冷却所需的复杂性和基础设施提供了更好的系统冷却替代方案。
凭借更高的速度和紧凑的设计,客户应用程序需要在大致相同的空间内消耗比以前多 50% 到 75% 的热量。热输出在很大程度上取决于在HPEC(高性能嵌入式计算)系统中使用FPGA有效载荷,尤其是在软件定义无线电和雷达系统等应用中。
这增加了在设计过程中维护 Swap-C 的挑战越来越多,也加剧了 VITA 48.8 作为下一代 OpenVPX 系统设计首选冷却策略之一的出现。
VITA 48.8 改进的 Swap-C 特性对军事应用,尤其是直升机和无人驾驶飞行器 (UAV) 具有重要价值。得益于 VITA 48.8 改进的气流设计,同时允许使用更轻的复合底盘,传统的卡片固定器和弹出器/喷油器手柄被轻质千斤顶螺钉所取代,减少了对模块间传导冷却的依赖。
设计人员还可以整合1.0”、1.2” 和 1.5 英寸的固定槽距,摆脱 VITA 48.5 中有限的 1.52 英寸,以实现替代气流安排,并在传统的顶部边缘进气口之外在卡片边缘增加一个进气口。
由于 VPX 架构往往很复杂,因此误差幅度可能很高,尤其是在首次实现时。通常,系统架构师与嵌入式卡供应商合作以解决目标设计的功能需求,然后与封装解决方案和系统集成商(例如Elma)合作审查功率要求并提出最佳冷却方法。
由国防部 (DoD) 推动的 OpenVPX 社区内新的硬件融合计划可提高计算密度,这反过来又推动了对高级冷却方法的需求。尽管VITA 48.8仍然是设计工程师的新工具,但预计它将在下一代主板和背板的应用中迅速增长。
Elma的3U OpenVpx CMOSS背板和开发机箱支持这些计划,为创建性能优化的系统、减少SWaP并通过快速插入技术降低生命周期成本奠定了基础。背板包括精确的径向网络定时,以及用于 SBC、交换机、径向时钟和扩展的插槽配置文件。(图 2)
诸如SOSA(传感器开放系统架构)之类的后续标准也增加了对超出基于VITA 48.x的标准传导冷却标准的冷却方案的需求。
嵌入式系统内的热量和密度将继续增加,基于VPX的电子设备也无法幸免。了解可用于管理散热分布并保持在 VPX 标准定义参数范围内的选项,将为开发能够应对这些不断增加的设计压力的系统提供一种有用的方法。
* 出于本次讨论的目的,Swap-C中的 “C” 指的是 “冷却”,而某些定义将 “C” 定义为 “成本”。
We are taking AI Computing to the next level! Find out how our membership in the NVIDIA® Partner Network complements the designs of our rugged computing systems to deliver enhanced deployable systems specifically designed to operate in harsh environments.